Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612112

RESUMO

In the process of the ultrasonic-assisted arc welding of metal materials, traditional ultrasonic application methods, such as the low-frequency impact of ultrasonic horns on a base material, can easily cause the non-fusion defect. In order to solve this problem, a rotating sonotrode with a groove and double thin ends was designed in this study. The ultrasonic vibration is transmitted into the weld pool by the rolling of the sonotrode on both sides of the weld. The resonant frequency was set at 50 kHz. Firstly, based on the Mindlin theory, a rotating sonotrode without a groove was designed by solving the frequency equation and by conducting a finite element simulation. Secondly, the effects of the groove, perforation, and transition mode on the resonant frequency, stress distribution, and amplification factor were investigated by finite element simulation. Finally, the optimum rotating sonotrode with a groove was obtained. The results show that the size of a rotating sonotrode that has a small frequency error can be obtained by using the discrete interval solver method combined with finite element simulation. The groove can significantly reduce the resonant frequency. The stress concentration can be effectively reduced by using the elliptical transition mode. The resonant frequency and amplification factor of a rotating sonotrode with a groove could be effectively adjusted by a method of double-position joint perforation. The final resonant frequency was 49.721 kHz and the amplification factor was 3.02. This study provides an effective design method for a sonotrode with double thin ends and a groove structure.

2.
J Colloid Interface Sci ; 664: 539-548, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484522

RESUMO

The issues of dendrite growth, hydrogen evolution reaction, and zinc anode corrosion have significantly hindered the widespread implementation of aqueous zinc-ion batteries (AZIBs). Herein, trace amounts of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) additive is introduced into AZIBs to protect the zinc metal anode. Trace amounts of the TEMPO additive with nitroxyl radical can provide fast Zn2+ transport and anode protection ability by forming an adsorbed molecular layer via Zn-O bond. This interface not only provides strong interfacial compatibility and promotes dynamic transport of Zn2+, but also induces deposition of Zn2+ along Zn (002) plane. Additionally, the molecular protective layer significantly inhibits hydrogen evolution reaction (HER) and corrosion. The Zn anodes achieve high Coulombic efficiency of up to 99.75 % and long-term plating/stripping of more than 1400 h at 1 mA cm-2 and 0.5 mAh cm-2. The Zn//Zn symmetric cell can operate continuously for 2500 h at a current density of 1 mA cm-2 and 1 mAh cm-2, and it can still last for nearly 1400 h even when the current density is increased to 5 mA cm-2. Furthermore, the Zn//V2O5 full cell using TEMPO/ZnSO4 electrolyte effectively maintains a maximum capacity retention rate of 53.4 % even after 1500 cycles at 5 A/g. This innovative strategy introduces trace additive with free radicals into the electrolyte, which may help to achieve large-scale, ultra-long-life, and low-cost AZIBs.

3.
Heliyon ; 10(5): e26294, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434416

RESUMO

Background: The academia has increasingly acknowledged the superior biomechanical performance of the hybrid fixation technique in recent years. However, there is a lack of research on the hybrid fixation technique using BCS (Bilateral Cortical Screws) and BMCS (Bilateral Modified Cortical Screws). This study aims to investigate the biomechanical performance of the BCS and BMCS hybrid fixation technique in transforaminal lumbar interbody fusion (TLIF) at the L4-L5 segment in a complete lumbar-sacral finite element model. Methods: Three cadaver specimens are used to construct three lumbar-sacral finite element models. The biomechanical properties of various fixation technologies (BCS-BCS, BMCS-BMCS, BMCS-BCS, and BCS-BMCS) are evaluated at the L4-5 segment with a TLIF procedure conducted, including the range of motion (ROM) of the L4-5 segment, as well as the stress experienced by the cage, screws, and rods. The testing is conducted under specific loading conditions, including a compressive load of 400 N and a torque of 7.5Nm, subjecting the model to simulate flexion, extension, lateral bending, and rotation. Results: No significant variations are seen in the ROM at the L4-5 segment when comparing the four fixation procedures during flexion and extension. However, when it comes to lateral bending and rotation, the ROM is ordered in descending order as BCS-BCS, BCS-BMCS, BMCS-BMCS, and BMCS-BCS. The maximum stress experienced by the cage is observed to be highest within the BMCS-BCS technique during movements including flexion, extension, and lateral bending. Conversely, the BMCS-BMCS technique exhibits the highest cage stress levels during rotational movements. The stress applies to the screws and rods order the sequence of BCS-BCS, BCS-BMCS, BMCS-BCS, and BMCS-BMCS throughout all four working conditions. Conclusion: The BMCS-BCS technique shows better biomechanical performance with less ROM and lower stress on the internal fixation system compared to other fixation techniques. BMCS-BMCS technology has similar mechanical performance to BMCS-BCS but has more contact area between screws and cortical bone, making it better for patients with severe osteoporosis.

4.
EMBO J ; 43(1): 14-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177313

RESUMO

Sodium-calcium exchanger proteins influence calcium homeostasis in many cell types and participate in a wide range of physiological and pathological processes. Here, we elucidate the cryo-EM structure of the human Na+/Ca2+ exchanger NCX1.3 in the presence of a specific inhibitor, SEA0400. Conserved ion-coordinating residues are exposed on the cytoplasmic face of NCX1.3, indicating that the observed structure is stabilized in an inward-facing conformation. We show how regulatory calcium-binding domains (CBDs) assemble with the ion-translocation transmembrane domain (TMD). The exchanger-inhibitory peptide (XIP) is trapped within a groove between the TMD and CBD2 and predicted to clash with gating helices TMs1/6 at the outward-facing state, thus hindering conformational transition and promoting inactivation of the transporter. A bound SEA0400 molecule stiffens helix TM2ab and affects conformational rearrangements of TM2ab that are associated with the ion-exchange reaction, thus allosterically attenuating Ca2+-uptake activity of NCX1.3.


Assuntos
Cálcio , Trocador de Sódio e Cálcio , Humanos , Compostos de Anilina/farmacologia , Cálcio/metabolismo , Éteres Fenílicos/farmacologia , Trocador de Sódio e Cálcio/química
5.
Nature ; 626(7998): 427-434, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081299

RESUMO

Vesicular monoamine transporter 2 (VMAT2) accumulates monoamines in presynaptic vesicles for storage and exocytotic release, and has a vital role in monoaminergic neurotransmission1-3. Dysfunction of monoaminergic systems causes many neurological and psychiatric disorders, including Parkinson's disease, hyperkinetic movement disorders and depression4-6. Suppressing VMAT2 with reserpine and tetrabenazine alleviates symptoms of hypertension and Huntington's disease7,8, respectively. Here we describe cryo-electron microscopy structures of human VMAT2 complexed with serotonin and three clinical drugs at 3.5-2.8 Å, demonstrating the structural basis for transport and inhibition. Reserpine and ketanserin occupy the substrate-binding pocket and lock VMAT2 in cytoplasm-facing and lumen-facing states, respectively, whereas tetrabenazine binds in a VMAT2-specific pocket and traps VMAT2 in an occluded state. The structures in three distinct states also reveal the structural basis of the VMAT2 transport cycle. Our study establishes a structural foundation for the mechanistic understanding of substrate recognition, transport, drug inhibition and pharmacology of VMAT2 while shedding light on the rational design of potential therapeutic agents.


Assuntos
Microscopia Crioeletrônica , Proteínas Vesiculares de Transporte de Monoamina , Humanos , Sítios de Ligação , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Ketanserina/química , Ketanserina/metabolismo , Ketanserina/farmacologia , Reserpina/química , Reserpina/metabolismo , Reserpina/farmacologia , Serotonina/química , Serotonina/metabolismo , Especificidade por Substrato , Tetrabenazina/química , Tetrabenazina/metabolismo , Tetrabenazina/farmacologia , Proteínas Vesiculares de Transporte de Monoamina/antagonistas & inibidores , Proteínas Vesiculares de Transporte de Monoamina/química , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/ultraestrutura
6.
Nat Commun ; 14(1): 4487, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495621

RESUMO

Salt-overly-sensitive 1 (SOS1) is a unique electroneutral Na+/H+ antiporter at the plasma membrane of higher plants and plays a central role in resisting salt stress. SOS1 is kept in a resting state with basal activity and activated upon phosphorylation. Here, we report the structures of SOS1. SOS1 forms a homodimer, with each monomer composed of transmembrane and intracellular domains. We find that SOS1 is locked in an occluded state by shifting of the lateral-gate TM5b toward the dimerization domain, thus shielding the Na+/H+ binding site. We speculate that the dimerization of the intracellular domain is crucial to stabilize the transporter in this specific conformation. Moreover, two discrete fragments and a residue W1013 are important to prevent the transition of SOS1 to an alternative conformational state, as validated by functional complementation assays. Our study enriches understanding of the alternate access model of eukaryotic Na+/H+ exchangers.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Antiporters/metabolismo , Membrana Celular/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Ecotoxicol Environ Saf ; 253: 114686, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36863162

RESUMO

BACKGROUND: Few studies have focused on the associations between air pollutants and multiple organ system diseases in the entire hospitalized population. The present study aims to explore the short-term effects of six routinely monitored air pollutants on the broad causes of hospital admissions and estimate the resulting hospital admission burdens. METHODS: Daily hospital admission records from 2017 to 2019 were obtained from the Wuhan Information center of Health and Family Planning. Generalized additive models (GAMs) were employed to evaluate the effects of air pollutants on the percent increase in the cause-specific daily number of hospital admissions. Increased hospital admission numbers, days, and expenses were also estimated. RESULTS: A total of 2636,026 hospital admissions were identified. We found that both PM2.5 and PM10 increased the risk of hospital admissions for most disease categories. Short-term exposure to PM2.5 was positively associated with hospitalizations of several rarely studied disease categories, such as diseases of the eye and adnexa (2.83%, 95%CI: 0.96-4.73%, P < 0.01) and diseases of the musculoskeletal system and connective tissue (2.17%, 95% CI: 0.88-3.47%, P < 0.001). NO2 was observed to have a robust effect on diseases of the respiratory system (1.36%, 95%CI: 0.74-1.98%, P < 0.001). CO was significantly associated with hospital admissions for six disease categories. Furthermore, each 10-µg/m3 increase in PM2.5 was associated with an annual increase of 13,444 hospital admissions (95% CI: 6239-20,649), 124,344 admission days (95% CI: 57,705-190,983), and 166-million-yuan admission expenses (95% CI: 77-255). CONCLUSION: Our study suggested that particulate matter (PM) had a short-term effect on hospital admissions of most major disease categories and resulted in a considerable hospital admission burden. In addition, the health effects of NO2 and CO emissions require more attention in megacities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Cidades , Dióxido de Nitrogênio/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Hospitalização , Poluentes Atmosféricos/análise , Material Particulado/análise , China/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
8.
Adv Mater ; 35(16): e2209279, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36738101

RESUMO

Self-assembly of nanocrystals into superlattices is a fascinating process that not only changes geometric morphology, but also creates unique properties that considerably enrich the material toolbox for new applications. Numerous studies have driven the blossoming of superlattices from various aspects. These include precise control of size and morphology, enhancement of properties, exploitation of functions, and integration of the material into miniature devices. The effective synthesis of metal-halide perovskite nanocrystals has advanced research on self-assembly of building blocks into micrometer-sized superlattices. More importantly, these materials exhibit abundant optical features, including highly coherent superfluorescence, amplified spontaneous laser emission, and adjustable spectral redshift, facilitating basic research and state-of-the-art applications. This review summarizes recent advances in the field of metal-halide perovskite superlattices. It begins with basic packing models and introduces various stacking configurations of superlattices. The potential of multiple capping ligands is also discussed and their crucial role in superlattice growth is highlighted, followed by detailed reviews of synthesis and characterization methods. How these optical features can be distinguished and present contemporary applications is then considered. This review concludes with a list of unanswered questions and an outlook on their potential use in quantum computing and quantum communications to stimulate further research in this area.

9.
Sci Rep ; 13(1): 3344, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849465

RESUMO

Geological settings of the Karakoram Highway (KKH) increase the risk of natural disasters, threatening its regular operations. Predicting landslides along the KKH is challenging due to limitations in techniques, a challenging environment, and data availability issues. This study uses machine learning (ML) models and a landslide inventory to evaluate the relationship between landslide events and their causative factors. For this, Extreme Gradient Boosting (XGBoost), Random Forest (RF), Artificial Neural Network (ANN), Naive Bayes (NB), and K Nearest Neighbor (KNN) models were used. A total of 303 landslide points were used to create an inventory, with 70% for training and 30% for testing. Susceptibility mapping used Fourteen landslide causative factors. The area under the curve (AUC) of a receiver operating characteristic (ROC) is employed to compare the accuracy of the models. The deformation of generated models in susceptible regions was evaluated using SBAS-InSAR (Small-Baseline subset-Interferometric Synthetic Aperture Radar) technique. The sensitive regions of the models showed elevated line-of-sight (LOS) deformation velocity. The XGBoost technique produces a superior Landslide Susceptibility map (LSM) for the region with the integration of SBAS-InSAR findings. This improved LSM offers predictive modeling for disaster mitigation and gives a theoretical direction for the regular management of KKH.

10.
Environ Sci Pollut Res Int ; 30(6): 14402-14412, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36153419

RESUMO

Increasing research suggested that green spaces are associated with many health benefits, but evidence for the quantitative relationship between green spaces and mortality attributable to particulate matter with an aerodynamic diameter of 2.5 µm or less (PM2.5) is limited. We collected disease-specific mortality and PM2.5 data for a period of 4 years (2015-2018) along with green space data for an 8-year duration (2010-2017) in 31 provincial-level administrative regions of China. First, this study used the Integrated Exposure-Response model to estimate the mortality of four diseases attributable to PM2.5, including chronic obstructive pulmonary diseases (COPD), lung cancer (LC), ischemic heart disease (IHD), and cerebrovascular disease (CBVD). Then we performed linear regression and mixed-effects model to investigate the counteracting effect of green spaces on death caused by PM2.5 exposure. The differences in impacts among the Eastern, Central, and Western regions were explored using stratified analysis. The most significant results from linear regression analysis indicated that per 100 km2 of green spaces increase, there was a decreased total mortality (10-5) (COPD, LC, IHD, and CBVD) attributable to PM2.5 by - 4.012 [95% confidence interval (CI): - 5.535, - 2.488], while the reduction by mixed-linear regression analysis was - 2.702/105 (95% CI = - 3.645, - 1.759). Of all hysteresis analyses, the effect estimates (ß) at lag3 and lag4 were the largest. The effect of green spaces was more advantageous when targeting CBVD and the Eastern region. We found a negative correlation between green space exposure and mortality attributable to PM2.5, which can provide further support for city planners, government personnel, and others to build a healthier city and achieve national health goals.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Transtornos Cerebrovasculares , Neoplasias Pulmonares , Isquemia Miocárdica , Doença Pulmonar Obstrutiva Crônica , Humanos , Poluentes Atmosféricos/análise , Parques Recreativos , Material Particulado/análise , China , Exposição Ambiental/análise , Poluição do Ar/análise
11.
Environ Sci Pollut Res Int ; 30(9): 23494-23509, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36323971

RESUMO

This paper proposed a hybrid system that combined dielectric barrier discharge plasma with catalysis (DPC) for toluene degradation. To improve the performance of DPC, photocatalysts TiO2 were doped by Mn and Fe, respectively. All prepared photocatalysts were characterized using UV-Visual DRS., SEM, XPS, BET, and XRD. The effects of the doping ratio, AC frequency, electric field intensity, gas flow rate, and initial concentration on toluene degradation efficiency, ozone decomposition capacity, and COx selectivity have been investigated. The best doping ratios of Mn and Fe were both 1.0 at%. The increase of electric field intensity in the range of 6.9-10.3 kV/cm could favor the synergism for DPC significantly, but the ascending of AC Frequency failed to do that. Fe-DPC showed slightly better performance than Mn-DPC in degradation efficiency and COx selectivity, while Mn-DPC was ahead of Fe-DPC for the ozone decomposition. Mn-DPC and Fe-DPC both could maintain the high toluene degradation efficiency, when gas flow rate and initial concentration increase from 2.5 to10.1 cm/s and from 700 to 2300 mg/cm3, respectively.


Assuntos
Ozônio , Titânio , Tolueno , Catálise
12.
Front Public Health ; 10: 1026648, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466446

RESUMO

Background: Smoking has been widely reported to have a significant relationship with hypertension, but the past description of this relationship has not been uniform. In addition, there has been a lack of research to discuss the impact of environmental exposure on the relationship between smoking and hypertension. Therefore, this study estimates the association between smoking and hypertension in middle aged and elderly people in China under different PM2.5 (fine particulate matter) concentrations and the green space exposure conditions. Methods: Individual sample data from the China Health and Retirement Longitudinal Study in 2018 and the long-term average exposure concentration of fine particles and green space exposure for all participants were used with a multilevel binary logistic mixed effects model. Adjustments were made for sociodemographic characteristics and other health behaviors including drinking, physical activity, and social activity. The normalized difference vegetation index (NDVI) and PM2.5 concentration stratification were assigned with the median of the population exposure concentration as the dividing line, and the dual environmental factor stratification was assigned in combination with the two types of environmental exposure. The analysis was also stratified using age groups. Results: A total of 10,600 participants over the age of 45 were included in the study. The effects of smoking on hypertension were diverse under different environmental exposure conditions. There was a significant relationship between smoking behavior and hypertension in the Low-NDVI group, and the effect value of this relationship was significantly different from that in the High-NDVI group. Furthermore, for respondents exposed to low green spaces and high PM2.5 environments at the same time (Low-NDVI/High-PM2.5 group), their smoking behavior may lead to an increase in the risk of hypertension. In addition, the risk of hypertension caused by smoking in the middle-aged (45-64) was significant under low green space exposure, but the effect difference between the different age groups was not significant. Conclusions: The relationship between smoking and hypertension was different under different environmental exposure conditions. Exposure to low green spaces may strengthen the association between smoking and hypertension risk. When participants were exposed to both low green spaces and high PM2.5 concentrations, the risk of hypertension caused by smoking was significantly higher than that of those who were exposed to high green spaces and low PM2.5 concentrations.


Assuntos
Hipertensão , Fumar , Idoso , Pessoa de Meia-Idade , Humanos , Fumar/efeitos adversos , Fumar/epidemiologia , Estudos Transversais , Parques Recreativos , Estudos Longitudinais , Hipertensão/epidemiologia , Hipertensão/etiologia , Material Particulado/efeitos adversos
13.
Front Chem ; 10: 1052574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36385989

RESUMO

Solution-processed scintillators hold great promise in fabrication of low-cost X-ray detectors. However, state of the art of these scintillators is still challenging in their environmental toxicity and instability. In this study, we develop a class of tetradecagonal CuI microcrystals as highly stable, eco-friendly, and low-cost scintillators that exhibit intense radioluminescence under X-ray irradiation. The red broadband emission is attributed to the recombination of self-trapped excitons in CuI microcrystals. We demonstrate the incorporation of such CuI microscintillator into a flexible polymer to fabricate an X-ray detector for high-resolution imaging with a spatial resolution up to 20 line pairs per millimeter (lp mm-1), which enables sharp image effects by attaching the flexible imaging detectors onto curved object surfaces.

14.
Nat Commun ; 13(1): 2084, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440630

RESUMO

The low-voltage activated T-type calcium channels regulate cellular excitability and oscillatory behavior of resting membrane potential which trigger many physiological events and have been implicated with many diseases. Here, we determine structures of the human T-type CaV3.3 channel, in the absence and presence of antihypertensive drug mibefradil, antispasmodic drug otilonium bromide and antipsychotic drug pimozide. CaV3.3 contains a long bended S6 helix from domain III, with a positive charged region protruding into the cytosol, which is critical for T-type CaV channel activation at low voltage. The drug-bound structures clearly illustrate how these structurally different compounds bind to the same central cavity inside the CaV3.3 channel, but are mediated by significantly distinct interactions between drugs and their surrounding residues. Phospholipid molecules penetrate into the central cavity in various extent to shape the binding pocket and play important roles in stabilizing the inhibitor. These structures elucidate mechanisms of channel gating, drug recognition, and actions, thus pointing the way to developing potent and subtype-specific drug for therapeutic treatments of related disorders.


Assuntos
Canais de Cálcio Tipo T , Canais de Cálcio Tipo T/metabolismo , Humanos , Potenciais da Membrana
15.
Materials (Basel) ; 14(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34500979

RESUMO

Ultrasonic energy is introduced into the Metal Inert Gas (MIG) welding arc and weld pool by superposition of an ultrasonic frequency current. In this study, the arc shape, arc energy, and ultrasonic energy that responded to ultrasonic excitation voltage and frequency is investigated. The comprehensive influence of arc and ultrasonic energy on weld formation, microstructure, and mechanical properties is further studied. The arc and ultrasonic energy are analyzed by using a high-speed camera and microphone, respectively. The results showed that the arc width increased, and the arc energy density decreased after the superposition of ultrasonic current. The arc height could be compressed under certain ultrasonic excitation parameters. The ultrasonic excitation voltage and frequency had a direct influence on the ultrasonic energy. The arc height, arc energy density, and ultrasonic energy together determined the weld width. Ultrasound could effectively refine the microstructure of the weld zone and fusion zone but had little effect on the heat-affected zone. Ultrasound improved the hardness of the joint by refining the grain and the second phase. The joint hardness was the highest when the ultrasonic excitation voltage was 100 V, and the frequency was 30 kHz.

16.
J Colloid Interface Sci ; 600: 594-601, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030012

RESUMO

The supported and dispersed ultrafine active species for electrocatalytic water oxidation are quite promising for the high intrinsic activity. A novel heterostructure of ultrafine FeOOH nanodots with an average size of 2.3 nm supported on CoAl-LDH nanosheets, is constructed by a facile method under ambient conditions. The as-prepared FeOOH@CoAl-LDH shows a strong interfacial interaction upon the formation of heterostructure, and is demonstrated as a highly efficient and stable electrocatalyst that demands 272 mV to attain 50 mA cm-2 and exhibits a Tafel slope of 40 mV dec-1. Moreover, density functional theory calculations manifest the coupling of FeOOH with CoAl-LDH can effectively decrease the energy barrier during the water oxidation process by optimizing the adsorption free energy of intermediates in the reaction pathway. The successful development of FeOOH@CoAl-LDH can shed light on the design of novel electrocatalysts that can fully take advantages of small size, heterostructure and synergistic effect.

17.
Artigo em Inglês | MEDLINE | ID: mdl-33921784

RESUMO

Shortening of the gestational duration has been found associated with ambient air pollution exposure. However, the critical exposure windows of ambient air pollution for gestational duration remain inconsistent, and the association between ambient air pollution and early term births (ETB, 37 to 38 weeks) has rarely been studied relative to preterm births (PTB, 28-37 weeks). A time-series study was conducted in Shiyan, a medium-sized city in China. Birth information was collected from the Shiyan Maternity and Child Health Hospital, and 13,111 pregnant women who gave birth between 2015 and 2017 were included. Data of the concentrations of air pollutants, including PM10, PM2.5, NO2, and SO2 and meteorological data, were collected in the corresponding gestational period. The Cox regression analysis was performed to estimate the relationship between ambient air pollution exposure and the risk of preterm birth after controlling the confounders, including maternal age, education, Gravidity, parity, fetal gender, and delivery mode. Very preterm birth (VPTB, 28-32 weeks) as a subtype of PTB was also incorporated in this study. The risk of VPTB and ETB was positively associated with maternal ambient air pollution exposure, and the correlation of gaseous pollutants was stronger than particulate matter. With respect to exposure windows, the critical trimester of air pollutants for different adverse pregnancy outcomes was different. The exposure windows of PM10, PM2.5, and SO2 for ETB were found in the third trimester, with HRs (hazard ratios) of 1.06 (95%CI: 1.04, 1.09), 1.07 (95%CI: 1.04, 1.11), and 1.28 (95%CI: 1.20, 1.35), respectively. However, for NO2, the second and third trimesters exhibited similar results, the HRs reaching 1.10 (95%CI: 1.03, 6.17) and 1.09 (95%CI: 1.03,1.15), respectively. This study extends and strengthen the evidence for a significant correlation between the ambient air pollution exposure during pregnancy and the risk of not only PTB but, also, ETB. Moreover, our findings suggest that the exposure windows during pregnancy vary with different air pollutants and pregnancy outcomes.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Nascimento Prematuro , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Criança , China/epidemiologia , Feminino , Humanos , Recém-Nascido , Exposição Materna/efeitos adversos , Material Particulado/efeitos adversos , Material Particulado/análise , Gravidez , Nascimento Prematuro/induzido quimicamente , Nascimento Prematuro/epidemiologia
18.
J Hazard Mater ; 400: 123215, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32593023

RESUMO

Vermicomposting is a sustainable option for the recycling of biodegradable organic waste. However, it also produces nitrous oxide (N2O), which is a highly potent greenhouse gas. In this study, the N2O stable isotope and functional genes for nitrogen cycling were determined to investigate the sources of N2O during vermicomposting. The results showed that vermicomposting promoted the organic degradation and nitrogen nitrification, and the presence of earthworms increased the emission of N2O during vermicomposting compared to that during the control treatment with no earthworms. The site preference analysis of N2O stable isotope showed that both nitrification and denitrification were present during the early stages of vermicomposting, while nitrification was the dominant contributor to N2O production in the later stages. Moreover, earthworms increased the gene copies of amoA, and stimulated the nitrifying bacteria, and hence, increased the N2O emission via nitrification. In addition, the activity of earthworms reduced the gene number of nosZ during vermicomposting, while the denitrification was the main source of N2O in the earthworm gut, as the conditions inside the gut inhibited nosZ. Overall, nitrification was the major pathway (55.8-88.7 %) for N2O production, which was promoted by the introduction of earthworms through nitrification.


Assuntos
Oligoquetos , Oryza , Animais , Desnitrificação , Nitrificação , Óxido Nitroso , Esgotos
19.
Chemosphere ; 253: 126697, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32298915

RESUMO

The emergence and spread of antibiotic resistance are major threats to ecosystems and human health. Transoceanic channels (e.g., ship ballast water) can transfer harmful aquatic organisms across geographically isolated waters. However, the occurrence of antibiotic resistance genes (ARGs) in ship ballast water and their relationship with microbial communities and environmental factors remain unknown. In this study, ballast water from 28 vessels sailing to Shanghai and Jiangyin (China) were collected, and the ARGs in these water samples were investigated. Considerable levels of ARGs and integrase of the class-I integrons (intI1) were detected in all ballast water samples. sul1 and tetQ were the most and least abundant ARGs in ballast water samples, respectively. The ARGs were strongly correlated with those of the 16S rRNA and intI1 genes. Ballast water exchange can reduce the absolute abundance of some kinds of ARGs while increasing the relative abundance of several ARGs (e.g., mefA, mexF, strB, sul1, and tetQ). Moreover, the bacterial hosts of ARGs were generally different in the unexchanged ballast water (UEBW) and exchanged ballast water (EBW). In particular, Leisingera and unclassified_Erythrobacteraceae were the main ARGs-associated genera in the EBW, while Pseudohongiella, Cycloclasticus, OM43_clade, norank_f_Rhodospirillaceae, and norank_f_Rhodobacteraceae were the dominant ARGs hosts in the UEBW. Overall, ship ballast water is an effective moving carrier for the global transference of ARGs, and its sufficient management is required for mitigating ARGs propagation across oceans.


Assuntos
Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Navios , Eliminação de Resíduos Líquidos/métodos , Bactérias/efeitos dos fármacos , China , Ecossistema , Integrons/genética , Oceanos e Mares , RNA Ribossômico 16S/genética , Abastecimento de Água
20.
J Biomater Sci Polym Ed ; 31(4): 491-503, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31815604

RESUMO

Bio-adhesives based on biopolymers have been widely researched for tissue repair. However, the adhesive properties are still insufficient to meet the practical applications. Introducing functional groups into the polymer chains that have multi-interactions among inter/intra-molecules and with substrates is an efficient way to increase cohesion force and further improve the adhesive properties. In this study, 3,4-dihydroxyphenyl propionic acid (DPA) and dopamine (DA) containing adhesion functional catechol groups were employed to modify chitosan (CS) and γ-polyglutamic acid (γPGA), respectively. The substituted degrees of the catechol groups were controlled by the catechol compositions. DPA modified chitosan/DA modified γPGA (CS-DPA/γPGA-DA) adhesives prepared by mixing CS-DPA and γPGA-DA. Effects of the substituted degrees and substrates on the adhesion strength were measured by tensile testing machine. The results showed good adhesion property of the CS-DPA/γPGA-DA adhesive on many surfaces of the substrates. Especially on the arthrodial cartilage, the adhesive strength reached around 150 kPa, much higher than commercially available tissue adhesives. The high adhesion property might be due to the adhesion interactions between the catechol groups and substrates and the high cohesion forces induced by the crosslinking interactions formation among the catechol groups and the electrostatic interactions between the CS and γPGA polymers. In vitro experiments demonstrated that the adhesive had good biocompatibility. These results suggested the catechol-based adhesive is a very suitable and promising biomaterial in the clinical medicine field.


Assuntos
Adesivos/química , Adesivos/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Bivalves , Animais , Ácidos Cafeicos/química , Catecóis/química , Quitosana/química , Dopamina/química , Humanos , Teste de Materiais , Ácido Poliglutâmico/química , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...